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Abstract

Convergence of modal analysis solutions of step-
type waveguide discontinuity problems is studied. The
convergence rate depends on the ratio between the num-
ber of modal terms retained in different regioms.
Guidelines for accurate and efficient computations are
indicated.

1 Introduction

The modal analysis method is a standard computer
oriented method for solving discontinuity problems in
waveguides. In the formulation the total fields in
each guide region are expanded in terms of a complete
set of normal modes whose amplitudes are adjusted so
as to satisfy the boundary conditions at the discon-
tinuity. This procedure leads directly to a scatter-
ing matrix that characterizes the isolated discontinui-
ty. Since the scattering matrix contains information
on all the modes either above or below cutoff, a useful
wideband equivalent network can be constructed for the
analysis of interacting discontinuities in waveguides.

Although the analysis is
arise in the actual numerical calculations as a result
of convergence problems. The numerical solutions use
only a finite numer of normal modes, and as a result
they may converge to an incorrect value if an improper
ratio is chosen between the number of modal terms re-
tained in different regions. This phenomenon, known
as relative convergence', has been studied for iris-
type waveguide discontinuities[1,2].

exact, difficulties can

The class of problems to be considered here is
step-type waveguide discontinuity problems. This dis-
continuity structure is one of the most useful building
blocks for waveguide transformers[3] and filters[4,5].
Recently several authors[3,6] have applied the modal
analysis method to these problems. However, no dis-—
cussion has been included on the convergence problem.
Due to the increasing interest in developing a wideband
equivalent network, it is important to have an under-
standing of the associated convergence problem and
accompanying guidelines for making accurate and effi-
cient computations. This is the motivation for this
study.

1T Formulation

The problem is a transverse junction between two
rectangular waveguides as shown in Fig. la. The junc-
tion is formed by joining two waveguides of different
cross-sections end to end, with concentric axial lines.
For arbitrary fields incident from both guides, the
total fields in each region are composed of the inci-
dent fields and the ccattered fields due to the junc—
tion. The boundary value problem is solved by first
expanding the total fields in terms of the TE and/or TM
normal modes and then matching the tangential compo-
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nents of the fields at the junction. The amplitudes
of the normal modes are conveniently represented by
the elemints_of colump vectors as shown in Fig. 1b,
where (3 , g{) and (b, , b ) are the amplitude vectors
of the incident and scattered fields in region I and
II, respectively. The dimensions of vectors a and b,
which indicate the number of normal modes retained,
are set to be P and Q, respectively. The continuity
condition on the tangential components of the electric
and magnetic fields is then applied across the aper-
ture (z = 0). The resulting equations, with the scat~
tered field amplitudes as unknowns, are re-arranged
into the form shown in Fig. lc. The final solution is
the scattering matrix, S, containing the four elements
given by

Sy, = [¥, + HTYIH]_l [y, - HTYlH] (1la)
s, = 2[Y, + HTYlH}‘l HTY2 = [1 - SZZ]HT (1b)
Sip = Z[HY;lHTYl + 1]"l H=H[I+5s,,] (le)
S~ [HY;lHTYl + 117t [HY;lHTYl—I] = —HSZZHT

(1d)

where I is the identity matrix; Yl(PxP) and Yz(QxQ)

are diagonal matrices whose diagonal elements are the
wave impedances of the corresponding normal modes;

H(PxQ) and its transpose HT(QxP) are the transforma-—

. . T
tion matrices with the element H =H =
mn nm
f @ € da, € and €, are the transverse
im 2n In 2n
aperture

electric field components of the n-th normal modes at
z=0 for region I and II, respectively.

. . Q
The scattering parameters Sll’ 821, SlZ’ and 89y

are matrices of the same dimension as (PxP), (QxP),
(PxQ), and (QxQ), respectively, i.e., they contain not
only the scattering characteristics of the fundamental
mode, but also those of the higher-order evanescent
modes. It is interesting to point out the expressions
in eqn.(l) are identical to those obtained in [6]
using a conservation of complex power technique.
result, the solutions of the modal analysis always
satisfy the condition of power conservation.

As a

IITI Numerical Results and Discussion

First, consider a special case of b=d, i.e., two
guides are of equal height. This reduces the structure
to an H-plane step junction such that any TEnO wave in—

cident excites only TE The

p0
normal modes and their wave impedances are obtained for
both regions and from (1) the scattering parameters are
calculated for any TEno wave.

waves with p = 1,2,.....
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In previous publications [7,8] the TE,. charac-

10

teristics of the H-plane step junction have been anal-
yzed with various methods. Although the published
data are not exact, they serve as a good reference for
the convergence study. As an example, consider the
case

l, n=1

+
3¢ = 0.71Xx; a = 0,n>1°

10 Wave in the

larger guide. Since the narrow guide is below cutoff
at the chosen frequency, the normalized input admit-
tance looking from the larger guide is purely suscep-
tive, i.e., Y, = jB. 1In Fig. 2 the susceptance B
obtained froml?l) is plotted versus P for the fixed
ratios (Q/P) = (1/3), (2/3), and (3/3). Note that as
P increases all three curves converge to values within
0.5% difference. Furthermore, these values agree with
the data provided by Waveguide Handbook [7] within the
specified 17 accuracy. It is also observed that the
values of B converge with respect to P to the asymp-
totic value most rapidly when Q/P = c/a.

which corresponds to an incident TE

In Fig. 3 the susceptance B is calculated with a
fixed P and a varying Q. It is noticed that B ap-
proaches the asymptotic value before Q reaches the
value of (c/a)P; beyond that point it drops and con-
verges to a smaller value. However, the error is not
very large. From this we conclude that, as long ds
both P and Q are large, the Q/P ratio does not affect
the solution significantly. However, for efficient
numerical computations one should keep the ratio
Q/P = c/a. This criterion becomes more important for
the case of a double-step junction where the numerical
computation is much more involved.

For a double-step junction an incident TE wave
would excite all the TEp, and TMy, normal modes, or
more appropriately the TEy,~to-X normal modes. The
total number of normal modes, P, retained in guide I
is M1xN1l, where M1 and N1 are the maximum values for m
and n, respectively. Even for a moderate value of
ML = N1 = 20, P becomes so large (P = 400) that the
computation task is difficult and expensive. There~
fore, it is essential guidelines be available for use
in obtaining rapid convergence.

A number of numerical calculations were made and
it was noticed that the convergence behavior was simi-
lar to the case of the H-plane step junction. In par-
ticular the following points were noted:

(1) The solutions approach the correct values
as long as the values of M1, N1, M2, and N2 are large.

(2) Accurate and efficient solutions can be ob~
tained by maintaining the ratios: M2/Ml = c/aj
N2/N1 = d/b; N1/M1 = b/a.

This behavior is demonstrated by a typical example
given in Fig. 4. Notice that the change of N1/Mi from
1/1 to 1/2 does not affect the convergence rate very
much, but it does reduce the computation efforts sig-
nificantly.
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Fig. 1 (a) Geometry and dimensions,
(b) Amplitude vector representation
for incident and scattered fields,
(c) Generalized S-parameters.
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